手把手教给你“抽屉原理”(抽屉原理2)

抽屉原理2(手把手教给你“抽屉原理”)

“抽屉原理”,听名字很好玩,但这确实是数学上的一个难题,首先咱们看一看“抽屉原理”是怎么回事。

下面咱们提高一点难度,看一看抽屉原题在做题时的实际应用。

1. 六(1)班有49名学生。数学王老师了解到在期中考试中该班英文成绩除3人外均在86分以上后就说:“我可以断定,本班同学至少有4人成绩相同。”请问王老师说的对吗?为什么?

2. 从1,2,3,……,100这100个数中任意挑选出51个数来,证明在这51个数中,一定: (1)有2个数互质; (2)有两个数的差为50;

3、圆周上有2000个点,在其上任意地标上0,1,2,……,1999(每一点只标一个数,不同的点标上不同的数)。求证:必然存在一点,与它紧相邻的;两个点和这点上所标的三个数之和不小于2999。

4. 有一批四种颜色的小旗,任意取出三面排成一行,表示各种信号.证明:在200个信号中至少有4个信号完全相同.

5. 在3×7的方格表中,有11个白格,证明: (1)若仅含一个白格的列只有3列,则在其余的4列中每列都恰有两个白格; (2)只有一个白格的列至少有3列。

6.一个车间有一条生产流水线,由5台机器组成,只有每台机器都开动时,这篛流水线才能工作。总共有8个工人在这条流水线上工作。在每一个工作日内,这些工人中只有5名到场。为了保证生产,要对这8名工人进行培训,每人学一种机器的操作方法称为一轮。问:最少要进行多少轮培训,才能使任意5个工人上班而流水线总能工作?

7.在圆周上放着100个筹码,其中有41个红的和59个蓝的。那么总可以找到两个红筹码,在它们之间刚好放有19个筹码,为什么?

8.试卷上共有4道选择题,每题有3个可供选择的答案。一群学生参加考试,结果是对于其中任何3人,都有一道题目的答案互不相同。问:参加考试的学生最多有多少人?

9.某个委员会开了40次会议,每次会议有10人出席。已知任何两个委员不会同时开两次或更多的会议。问:这个委员会的人数能够多于60人吗?为什么?

10.某次选举,有5名候选人,每人只能选其中的一人或几人,至少有 人参加选举,才能保证有4人选票选的人相同

11.一次考试有20道题,有20分基础分,答对一题加3分,不达不加分也不减分,答错一题减1分,若有100人参加考试,至少有多少人得分相同?

12.一次数学竞赛,有75人参加,满分20分,参赛者得分都是整数,75人的总分是980分,问至少有几个人得分相同?

下面是答案☞

(0)
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,请发送邮件至 PTU@FOXMAIL.COM 举报,一经查实,立刻删除。